
Integrating Cache Performance Modeling and Tuning Support in

Parallelization Tools

Abdul Waheed and Jerry Yan

MRJ Technology Solutions

NASA Ames Research Center

Moffett Field, CA 94035-1000

E-mail: {waheed,yan } @nas.nasa.gov

Abstract

With the resurgence of distributed shared memory (DSM) systems based on cache-coherent Non Uniform

Memoo' Access (ccNUMA) architectures and increasing disparity between memo_ and processors speeds,

data locality overheads are becoming the greatest bottlenecks in the way of realizing potential high

performance of these systems. While parallelization tools and compilers facilitate the users in porting their

sequential applications to a DSM system, a lot of time and effort is needed to tune the memoo, performance

of these applications to achieve reasonable speedup, h_ this paper; we show that integrating cache

performance modeling and tuning support within a parallelization environment can alleviate this problem.

The Cache Performance Modeling and Prediction Tool (CPMP), employs trace-driven simulation

techniques without the overhead of generating and managing detailed address traces. CPMP predicts the

cache performance impact of source code level "what-if" modifications in a program to assist a user in the

tuning process. CPMP is built on top of a customized version of the Computer Aided Parallelization Tools

(CAPTools) environment. Finally, we demonstrate how CPMP can be applied to tune a real Computational

Fluid Dynamics (CFD) application.

1 Introduction

Distributed shared memory (DSM) multiprocessors offer ease of programming due to a global address

space. A majority of commercial DSM multiprocessors employs Non Uniform Memory Access (NUMA)

architecture for scalability purposes [19]. In addition, these multiprocessors are built around commodity

parts, including processors, with one or more levels of caches. Therefore, a programmer has to deal with

multiple levels of memory hierarchy to avoid memory performance bottlenecks in an application program.

Due to increasing disparity between processor and memory performance, it is essential to enhance the

utilization of caches to realize high performance potential of these multiprocessors. While global address

space facilitates the task of a programmer to port a sequential application, a lot of effort is still needed to

tune the cache performance.

In general, existing cache performance tuning approaches fall in one of two categories: measurement based

and modeling based. Table 1 lists the analysis goals and limitations of measurement and modeling based

cache performance evaluation techniques. None of these methodologies can be directly applied to assisting

an application developer to tune memory performance of a source code. Level of effort and turn-around

timeprohibita userto applymodelingbasedapproachesfor tuninganyrealcode.Nevertheless,trace-

drivensimulationapproachesareconsideredreliableandaccurateunderrealisticconditions[14].

Table I. Various memory subsystem performance analysis techniques, their goals, and limitations with

respect to application cache performance tuning.

Methodology

Measurements using on-

chip performance

counters

Analytic modeling

Trace-driven simulation

Execution-driven simu-

lation

Complete machine sim-

ulation

Analysis goals

Application profiling and cache measure-

merits for identifying bottlenecks [3,28]

Performance projections for existing applica-

tions on fi4tu re architectures [5, 9,15, 21]

Accurate analysis of reference behavior for

design and analysis of architectural features

[4,101

Detailed system level performance evaluation

of actual workload at various design stages

I181

Simulation of interaction between architec-

ture and operating system level behavior [26]

Limitations

Excessive overhead for tracing due to kernel

level interface: non-repeatable, and lack of

"what-if" analysis support [27]

Level of effort is inappropriate for analy:ing

"what-if" modifications for tuning

Generating and managing traces for even a

moderate-sized block of a real application is

non-trivial

7i_rn-around time is too long to be applicable

in a tuning scenario

Level of detail and effort involved in setting

up the simulation environment make it inap-

propriate for tuning

In this paper, we present an implementation of a uniprocessor cache performance tuning methodology that

combines measurement and trace-driven simulation techniques. The Cache Performance Modeling and

Prediction Tool, or "CPMP", retains the advantages of both techniques while avoiding their limitations. We

have built CPMP on top of a parallelization tool, called Computer Aided Parallelization Tools (CAPTools

[16]). Initial measurements help locate memory-intensive segments of the code. CPMP first constructs the

memory model related to a selected code block. This mode[can be used to study the impact of various

modifications in that code block on cache performance. User can select a modification that results in best

cache performance for implementation in tuned version of the code. CPMP analyzes an annotated (a

CAPTools generated) parse-tree representation of a Fortran77 source code and produces a corresponding

simulation model. Initial minimal measurements generate information about base virtual addresses of

arrays and variables and loop bounds in selected code block that may not be known statically. CPMP uses

this information to accurately predict the memory reference behavior. Using this model, a user can predict

cache performance with respect to coding alternatives and select the most suitable ones for an application.

Scope of our discussion in this paper is restricted to on-chip (level one or primary) cache performance.

Section 2 motivates the need for uniprocessor cache optimization to obtain scalable multiprocessor

performance and overviews our integration of CPMP in CAPTools environment. We focus on the

implementation of CPMP in Section 3. In Section 4, we present a case study where CPMP is used for

tuning cache performance of a Computational Fluid Dynamics (CFD) application, ARC3D, on an SGI

Origin2000.Wereviewtheresearcheffortsrelatedtoourworkin Section5.Weconcludewithadiscussion

of integratingcacheperformancemodelingandtuningwithparallelizingtoolsandfuturedirectionsof our

work.

2 Integrated Parallelization and Modeling Environment

In this section, we first motivate the need for uniprocessor cache performance tuning using three programs

from NAS Parallel Benchmarks suite. Subsequently, we describe the implementation of CPMP as an

automatic modeling tool, which can be used in conjunction with parallelizing programs for a DSM system.

2.1 Parallelization for DSM Multiprocessors

There are several paradigms that can be followed to parallelize sequential code for a DSM multiprocessor.

These paradigms include: explicit message passing; data parallel programming; and shared memory

programming. Shared memory programming is the simplest of these paradigms to implement in a

parallelizing tool or compiler. Parallelization is based on loops that do not have any loop-carried data

dependences among iterations. Loop iterations can be scheduled on multiple processors in a fork-and-join

manner. CAPTools can analyze the source code to identify parallelizable loops. Parallelization directives

are inserted to indicate to the compiler that the loops should be executed in parallel. During compilation,

the compiler replaces the directives with appropriate runtime system calls for shared memory

multiprocessing of loop iterations. Figure l(a) shows a code segment taken from the backsubstitution phase

of sequential implementation of the application benchmark BT. Using a customized version of CAPTools,

we parallelize BT using OpenMP directives for shared memory multiprocessing. Using standards, such as

OpenMP [24], ensures portability of the parallelized code to multiple shared memory systems. Figure l(b)

shows the CAPTools parallelized version of the code segment shown in Figure l(a).

do k=grid_points(3)-2,0,- 1

do j= 1 ,grid_points(2)-2

do i= 1 ,grid_points(1)-2
do m= I,BLOCKSIZE

do n= 1,BLOCK_SIZE

rhs(m,i,j,k) = rhs(m,i,j,k)
- lhs(m,n,cc,i,j,k)*rhs(n,i,j,k+ 1)

enddo

enddo

enddo (a)

enddo

enddo

>

c$omp paralleldo private(k,j,i,m,n)

do k=grid_points(3)-2,0,- 1

do j= 1,grid_points(2)-2
do i=l,grid_points(1)-2

do m= 1,BLOCK_SIZE

do n= 1,BLOCK_SIZE

rhs(m,i,j,k) = rhs(m,i,j,k)
- lhs(m,n,cc,i,j,k)*rhs(n,i,j,k+ 1)

enddo

enddo

enddo (b)
enddo

enddo

Figure 1. Shared memory multiprocessing directives based parallelization of z_backsubstitute
subroutine of BT. (a) Sequential code. (b) CAPTools parallelized code using OpenMP directives.

The above example underscores the minimal effort required on the part of user to parallelize the code for a

shared memory system. Apparently, this parallelization process does not consider the memory hierarchy of

the target system and hence cannot guarantee even reasonable speedup due to potential memory

performance bottlenecks. We parallelized BT as well as several other benchmarks from NAS suite by

inserting shared memory multiprocessing directives using a customized implementation of CAPTools and

executed them on an Origin2000 system. Figure 2 compares the performance of optimized and

unoptimized versions of three benchmarks: BT, SE and FT. Despite parallelizing most of the loops in

original versions of BT and SP benchmarks, the multiprocessor performance does not scale well due to

memory overheads.

E

e.-
0 ,

o

x
UJ

Number of processors

+ Unoptimized o Optimized

g

!

Number of processors

v

E

g

(a) BT (b) SP (c) FT
Figure 2. Impact of uniprocessor cache optimizations on multiprocessor performance for three

benchmarks taken from Class A of NAS Parallel Benchmark suite.

We tuned the uniprocessor cache performance of sequential versions of BT and SP by minimizing the

dimensions (i.e., sizes) of many temporary arrays. The original codes were written for vector

supercomputers where larger temporary arrays are recommended to fully benefit from vector registers.

However, larger temporary arrays result in excessive cache contention and misses on a cache-based

processor. Minimizing array sizes requires extensive modifications in the code by a user who is also

knowledgeable about the algorithm. Figure 3 presents the relevant parts of optimized version of the code

shown in Figure 1. Parallelized version of this code also privatizes the lhs array that further improves data

locality. Therefore, after uniprocessor cache performance tuning, scalability of parallelized BT and SP on

multiple processors is close to linear (see Figure 2). In case of FT, optimization is related to loop nest

transformations to enhance the parallel coverage of the program with additional loop level parallelism.

These examples indicate the importance of uniprocessor cache performance tuning for a shared memory

parallel program. Unfortunately, cache performance tuning is an iterative process and may not be

completely automated similar to the shared memory parallelization process. Therefore, it is important to

have memory performance modeling tools that predict the impact of alternative source code modifications

on cache performance.

do j= 1,grid_points(2)-2

do i= 1,grid_points(1)-2

do k=grid_points(3)-2,0,- 1
do m= I.BLOCK_SIZE

do n=I,BLOCK_SIZE

rhs(m,i,j,k) = rhs(m,i,j,k)

> - lhs(m,n,cc,k)*rhs(n,i,j,k+ 1)
enddo

enddo

enddo

enddo (a)
enddo

c$omp paralleldo private(j,i,k,m,n,lhs)

do j= 1,grid_points(2)-2
do i=l,grid_points(1)-2

do k=grid_points(3)-2,0,- 1
do m= I,BLOCK_SIZE

do n= I,BLOCK_SIZE

rhs(m,i,j,k) = rhs(m,i,j,k)
> - Ihs(m,n,cc,k)*rhs(n,i,j,k+ 1)

enddo

enddo

enddo
enddo (b)

enddo

Figure 3. Uniprocessor cache performance tuning of z_backsubstitute phase of BT by reducing sizes of
temporary arrays and privatizing them. (a) Sequential code. (b) CAPTools parallelized code.

2.2 Integration

In order to integrate cache performance modeling with parallelization process, we rely on an annotated

parse-tree of the code created by CAPTools. Figure 4 provides an overview of integrating cache

performance modeling support in CAPTools parallelization environment. Initial measurements are needed

to obtain runtime information to parameterize a selected code block. An automatic model generator then

uses the parse-tree of the source code and measured parameters to generate a simulation model of memory

references. This model is linked with a runtime library of a cache, which is parameterized for a particular

target system. Executing this model provides cache miss statistics. Comparing these cache miss statistics

for alternative code modifications, a user can determine the most suitable modification to be incorporated

in the original source code.

3 Automatic Cache Performance Model Generation

Automatic cache performance model generation for a Fortran77 source code block is based on the memory

references found in the parse-tree representation of that code. In this section, we explain the model

generation process starting from source to a memory model through its parse-tree representation in

CAPTools using an example code block shown in Figure 5. We focus our attention to only basic blocks of

code in which control flow does not change. While a DO statement is permissible, we assume that a

selected block of code does not contain any subroutine calls or IF constructs. These assumptions are not

overly restrictive as many numerical problems consist of memory-intensive kernels that are implemented

as basic blocks. There are three constructs of a basic block that need further attention to details: assignment

statements, array references, and DO loops.

r
Shared memory
parallelization tool
adapted from
CAPTools

I Sequential L.application code]"

t
Parser

Dependence
analyzer

I Interproceduralanalyzer

I 1

Profiler

Instrumentor _
Model generator

I Simulation of L
selected code

block r+

 0enMP0,rec,,vesiased parallelizer]

ode modification t

A

Select code block

for mode ng

I Selection of atuning strategy

I Parallelized Iapplication code

Figure 4. Implementation of cache performance modeling in a parallelization environment based on

CAPTools for tuning uniprocessor cache performance.

parameter (nx=64, ny=64)

real a(0:64, 0:64)

real b(nx,ny), c(nx,ny)

real d

do i = l,nx

doj = ny,1,-1

a(i,j+l) = b(i,j)*c(j,k) + d

enddo

enddo

Figure 5. An example code bloq k with three Fortran77 constructs o interest: assignment statement,
array references, and DO loops.

3.1 Assignment Statements

In the absence of function calls, an assignment statement is the only obvious way to access memory to

accomplish various computations. Memory accesses may also be needed for updating indices of a DO

loop. However, our experience with modeling several CFD applications indicates that the number and

impact of such references on overall cache performance is insignificant. Additionally, several compilers for

RISC processors use register variables for array indices to eliminate the need for memory accesses for

updating or reading array index values. Therefore, an assignment statement is a major source of memory

references in a Fortran77 program.

Using a parse-tree representation of a basic block, CPMP first identifies assignment statements and then

extracts array and variable references. Figure 6(a) presents a typical assignment statement involving

readingfromtwo arrayelementsandonevariableandthenwritingtheresultsto anotherarrayelement.

Figure6(b)presentstheparse-treerepresentationof thatassignmentstatement.Analysisof thisparse-tree

canhelpidentify:(1) readandwritememoryaccessesbasedontheplacementof anaccessonrightor left

sidesof anequality,respectively;and(2)variableandarrayaccessesasthenodethatrepresentsanarray

namehasdescendentsto identifyarrayindices.Figure6(c)depictsthepartof cacheperformancemode[

correspondingto theassignmentstatementshowninFigure6(a).Sizeof eachreferenceisextractedfrom

theirdefinition,aprocesswhichisexplainedin thefollowingsubsection.
I (b)

(a) = (c)

a +

a(i,j+l) = b(i,j)*c(j,k) + d
+

j 1

b e

i k

cacheSimL 1(add_b, size_b, "R", "b");

cacheSimL 1(add_c, size_c, "R", "c");

cacheSimL 1(add_d, size_d, "R", "d");

cacheSimL 1(add_a, size_a, "W", "a");

Figure 6. An example of automatic model generation. (a) An assignment statement in Fortran77; (b)
parse-tree representation of the assignment statement; and (c) simplified generated model for the
statement. Actual generated model contains a formula to calculate array reference addresses as a

function of the base address and indices for that array references rather than a single variable.

3.2 Array References

Since Fortran programs are often used for scientific computation of numerical algorithms, a number of

array access are expected in such programs. Arrays store program data in contiguous memory location of

identical sizes, which are determined by array type declaration in a program. Figure 7 highlights the steps

involved in generating necessary cache modeling code from array and variable declarations encountered in

the example Fortran77 code. If an array or variable is encountered in a statement in a selected code block,

we look for their declarations in the current subroutine, such as those presented in Figure 7(a). After

finding those declarations in the annotated parse-tree as shown in Figure 7(b), CPMP generates the

necessary code to define additional data structures to complement rest of the cache performance model for

that code block. This generated code is shown in Figure 7(c).

Model generation for references to array elements is different from scalar references in terms of

computation of the virtual address. While the virtual address of a scalar reference can be measured once,

we may have to determine addresses of individual elements for an array. Using Fortran convention of

storing an array in a column-major fashion, the address of an array element A(I,J,K) is calculated with

respect to the base address of A(1,1,1) as:

parameter(nx=64,ny=64)
reala(0:64,0:64)
realb(nx,ny),c(nx,ny)
reald

I I I I
PARAMETER REAL REAL REAL

/ o6_ _ (b)

0 64

int dim_a[2] = {65,65};

int dim_b[2l = {64,64 };

int dim_c[2] = {64,64};

int size_a = 8;

int size_b = 8;

int size_c = 8;

int size d = 8;
(c)

Figure 7. Automatic code generation for array and variable declarations in a Fortran77 program. (a) A
code segment showing some declarations. (b) Parse-tree representation of four statements. (c) Generated

code for cache performance modeling corresponding to the four statements.

Address(A(I, J, K)) = Address(A(I, 1, I)) + (/- 1) + Jdim_A(l) + K(dim_A(1).dim_A(2)),
(1)

where dim_A is a three dimensional vector such that each dimension specifies the size of corresponding

dimension of array A.

3.3 DO Loops

One characteristic of a numerical algorithm is its repetition of a core set of statements to accomplish an

iterative computation. This characteristic manifests itself in a Fortran77 program in the form of DO loops.

Therefore, DO loops are considered an important construct in a scientific application for several software

tools, including parallelizing compilers. In the context of memory model generation, DO loops are

important because they represent a repetitive set of memory references. If some of these repetitive

references are array elements, their address is calculated by generalizing the equation (1) for each iteration

of the loop. Repeated accesses to a set of memory locations within a DO loop are modeled with repetitions

of modeled accesses in each iteration of the loop.

Figure 8 illustrates the process of automatically generating cache performance model code from a loop nest

in the example Fortran77 code. In this particular case, values of the symbols nx and ny, which are used as

loop bounds, are determined from their declarations in a parameter statement using the process presented

in Figure 7. In other cases, it may not be possible to fully determine loop bounds and step values statically.

In those cases, we rely on the information gathered at runtime.

Using the model generation processes for three Fortran77 constructs, CPMP automatically generates cache

performance model for any basic block found in a program. We used Dinero trace-driven simulation tool to

validate the functionality and results of this model generator [8]. Details of this validation process will be

presented in the full paper.

(a)

do i = l,nx

doj = ny, l,-I

enddo

enddo

(b)

l I
DO DO

J J
i

1 -1

I nx ny I

int i;

intj;

for(i= I ;i<=64;i=+ I)

{
forO=64;j>=l;j=-l)

{

I
}

(c)

Figure 8. Code generation for DO loops in a Fortran77 code block. (a) An example loop nest. (b) Parse-
tree representation for the example DO loops. (c) Generate code for cache performance modeling. Note

that loop bounds are determined from the process illustrated in Figure 7.

4 Application Cache Performance Modeling and Tuning: A Case Study

In this section, we briefly present our experience of applying CPMP for modeling and tuning ARC3D.

ARC3D is a CFD application that solves a system of Naviar-Stokes partial differential equations for a three

dimensional mesh using scalar pentagonal algorithm. The original sequential code is written for vector

supercomputers and our objective is to port and tune it for an Origin2000 system. Based on initial

measurements of single processor execution of ARC3D, we decided to focus on the solver part of the

application. Figure 9 presents a code segment adapted from sequential implementation of solver phase that

works along x-direction (to be referred to as RHSX). Due to the complexity of this code, it is tedious to try

to manually generate a cache performance model for this code. We apply the automatic cache performance

model generator to this code block.

Initial measurements provides necessary base address and loop bound information which complements the

rest of the inforrnation obtained from source code analysis. Tables 2 and 3 provide measurement and source

code analysis based information obtained from the RHSX code block for its cache performance modeling.

Note that the column indicating array indices in Table 2 represents the array index for the first reference

involving that array. Some array references have different indices in subsequent references for this code

block. Also note that the loop bounds information is completely specified by source code analysis in Table

3. However, in many other cases only runtime measurements may supply this information. Several

modifications can be implemented in the original source code in an attempt to improve cache performance

[25]. Some of these coding alternatives are listed in Table 4.

Figure 10 compares the cache performance due to six alternative modifications of the original code in

terms of number of cache misses and cache miss ratio, which is a ratio of the number of misses to total

number of memory references. Measurement based cache statistics are obtained through the perfex tool on

real xxx(64,64,64), xxy(64,64,64), xxz(64,64,64)

real e(64,64,8), s(64,64,64,5),q(64,64,64,6)

real qsx,pp,qsinfx,pint],uinf, vinf, winf.rx4

integer j,k,l,n

do k=2,64

do 1=1,64

do j= 1,64

qsx = rx4 +

> (xxx(j,k,l)*q(j,k,l,2) + xxy(j,k,I)*q(j,k,l,3) +

> xxz(j,k,l)*q(j,k,l,4))/q(j,k,l, 1)

pp = (q(j,k,l,2)*q(j,k,l,2)+q(j,k,l,3)*q(j,k,l,3)+

> q(j,k,l,4)*q(j,k,l,4))*O.5/q(j,k,l, 1)

qsinfx = (rx4+xxx(j,k,I)*uinf+xxy(j,k,l)*vinf+

> xxz(j,k,1)*winf)*(1.0/q(j,k,l,6))

pinfj = (1.O/q(j,k,l,6))* 1.4

e(j,l,1) = q(j,k,l,l)*qsx - qsinfx

e(j,l,2) = q(j,k,l,2)*qsx + xxx(j,k,l)*pp -

> uinf*qsinfx - xxx(j,k,1)*pint_

e(j,l,3) = q(j,k,l,3)*qsx + xxy(j,k,l)*pp -

> vinf*qsinfx - xxy(j,k,l)*pinfj

e(j,l,4) = qO,k,l,4)*qsx + xxz(j,k,1)*pp -

> winf*qsinfx - xxz(j,k,I)*pint]

e(j,l,5) = (q(j,k,l,5)+pp)*qsx - qsinfx

enddo

enddo

do n= 1,5

do j=2,64

s(j,k,2,n) = (e(j,3,n)-e(j, 1,n))*(-0.5)

s(j,k,64,n)= (e(j,64,n)-e(j,63,n))

enddo

enddo

>

do n= 1,5

do 1=3,62

do j=2,63

s(j,k,l,n) = e(j,l+2,n)+e(j,l+ l,n)+

e(j,l- l,n)+e(j,l-2,n)

enddo

enddo

enddo

enddo

end

Figure 9. A code segment adapted from RHS solver in x-direction in ARC3D application.

Table 2. Selected memory reference information related to the RHSX phase obtained from

measurements and source code parsing.

Measurement based

informationSource code parsing based information

Reference Reference Reference Array

symbol type size dimension Array index Base virtual address

-- OX7FFF2EBC
k Write 4 --

-- OX7FFF2ECO
1 Write 4 --

-- OX7FFF2EB4
j Write 4 --

-- OX7FFF2EBO
I1 Write 4 --

.,o:x Read 8 (64,64, 64) (j, k. 1) OX 7FE F2 EA 0

xxv Read 8 (64,64,64) (j,k.l) OX 7F7F2 EAO

xx: Read 8 (64,64,64) (j,k,l) OX7F6F2EAO

e Read/Write 8 (64,64,8) (j,l, 1) OX7F6D2EAO

s Write 8 (64,64,64,5) (j,k,2,n) OX7F1D2EAO

q Read 8 (64,64,64,6) (j,k,l.2) OX7F8F2EAO

-- OX 7FFF2 EBO
qsx Read/Write 8 --

Origin20(X), which are not accurate due to sampling and software multiplexing of two physical counters.

Cache performance predictions indicate that following code modifications improve cache performance

compared to the original code: array padding (#2), loop nest transformations (#4), reduction of temporary

array sizes (#5), and blocking (#6). Finally, we combine these modifications that individually work in the

10

Table 3. Loop nest information related to the RHSX phase obtained from measurements and source

code parsing.

Measurement based

Source code parsing based information

Loop level

1

Index

variable

Lower

bound

k 2

/ I

j

n]

j 2

n]

I 3

j 2

Upper
bound

64

64

64

64

62

63

Step

1

Lower

bound

2

information

Upper
bound

64

64

64

64

62

63

Step

1

Table 4. Possible modifications of RHSX code.

Modification

1

2

3

Original code

Explanation

Array padding to make dimensions of all arrays non-power-of-two values

Array restructuring for e, s, and q, such that their dimensions become e(8,64,64), s(5,64,64,64) at d

q(6,64,64,64)

l._op nest transformations to reduce stride with restructured arrays for modification # 3

Reduction of temporary array sizes by making major changes in code for "de-vectorizing"

Blocking by saving references for multiply accessed array elements in temporao' variables

A combination of above techniques that individually result in cache perfi)rmance tmprovenwnt

final tuned version of the code. Predicted cache performance corresponding to this version (#7) shows best

improvement compared to the original code.

[[] Predicted
(a) I • Measured I (b)

I _ooooaoo

9000000

i SO00000

7000000

SO00000

5000000

i loaoooo

3000000

zoooooo

ioooo0o o

0

Modifications to original code

¢5

40

35

_S

iO

I! ,
i 3 4 s 6

..... Modif-ications to Original Code

Figure 10. Predicted and measured cache performance due to various code modifications. Plots
represent a comparison of (a) number of cache misses and (b) cache miss ratios.

We modified RHSY and RHSZ following the modifications implemented in RHSX. We parallelized this

uniprocessor cache performance tuned version of ARC3D using our customized implementation of

1l

CAPTools. Figure 11 presents the measured scalability characteristics of ARC3D on an Origin2000.

Uniprocessor cache performance tuning results in about 80% reduction in execution time compared to

original version. In addition, multiprocessor performance shows almost linear speedup.

[+ Unoptimized o Optimized]

1ooo,
18O0

Boo,

i i_0o

_'l tzoo

_ s00.

k_ 5oo

=3 Boo 3oo

O
QI
X _o0 _ zoo

III 2o0 _ loo *

o
0

1 4 8 1 4

Number of processors Number of processors

Figure 11. Comparison of multiprocessor performance of original
and cache tuned versions of ARC3D on an Origin2000.

5 Related Work

Several cache performance modeling efforts have tried to combine multiple techniques for specific

evaluation goals. Mtool combines low overhead instrumentation to generate enough information to isolate

memory performance bottlenecks by analyzing the difference between actual and predicted cache

performance [13]. Martonosi et al. have investigated the use of memory coherence protocol data in

multiprocessors for analyzing memory performance [23]. MemSpy uses a trace-driven simulation with

profiling to explore the causes of cache misses using traces generated by executing the instrumented

programs [22]. Our experience indicates that generating detailed memory reference traces for an

interesting code block from even a moderately complex application not only causes excessive perturbation

but also generates unmanageable amounts of trace data.

A number of researchers are integrating compiler level information about source code with system models

at different levels of detail for different analysis purposes [6]. Adve et al. explore the possibility of using

compiler information statically as well as dynamically at runtime for architecture oriented tuning [1].

Compilers are integrated with measurement based performance evaluation tools for data parallel programs

[2]. Ghosh et al. derive cache miss equations based on source code level analysis and use them in SUIF

compiler system for cache performance tuning [11]. Mowry uses prefetching techniques to exploit latency

hiding mechanisms to optimize memory reference locality [20]. These efforts indicate a growing trend of

embedding performance analysis into the compiler to facilitate the tuning task for the end user. Our

12

implementation of CPMP in a parallelization environment is an initial practical step toward this goal for

tuning application cache performance on multiprocessors.

6 Conclusions

In this paper, we presented CPMP, a cache performance modeling and prediction tool integrated in a

parallelization environment. We demonstrated this tool based mostly on source code analysis and

minimally on runtime information. The integrated environment was applied for parallelization and cache

performance modeling and tuning of ARC3D. Measurements based results of optimized version of

ARC3D showed the benefits of uniprocessor cache performance tuning for scalable multiprocessor

performance.

Integration of CPMP in a parallelization tool is a step toward implementing cache performance modeling

and tuning within a parallelization compiler. Complexity of memory subsystems in state-of-the-art parallel

systems is making it increasingly difficult for a user to tune an application using existing measure-modify-

execute approach. Many researchers believe that using strategically gathered runtime information, a

compiler can play an active role in tuning an application [1]. CPMP relies on minimal amount of runtime

information to maintain the accuracy of cache performance predictions. We are extending CPMP to use

object code to determine base addresses relative to a dynamically allocated object, such as stack or heap.

These estimated base addresses can become part of parameterization of a system. This approximation may

affect accuracy of predictions but it will facilitate its seamless integration in a parallelization environment.

Acknowledgments

We thank our colleagues, H. Jin and J. Taft, for suggesting and actually implementing the cache

optimizations in sequential implementations of NAS Parallel Benchmarks and ARC3D.

Bibliography

[1] Sarita V. Adve, Doug Burger, Rudolf Eigenmann, Alasdair Rawsthorne, Michael D. Smith, Cathe-

rine H. Gebotys, Mahmut T. Kandemir, David L. Lilija, Alok N. Choudhary, Jesse Z. Fang, and Pen-

Chung Yew, "Changing Interaction of Compiler and Architecture," IEEE Computer, Dec. 1997, pp.

51-58.

[2] Vikram Adve, Jhy-Chun Wang, John Mellor-Crummey, Daniel Reed, Mark Anderson, and K.

Kennedy, "An Integrated Compilation and Performance Analysis Environment for Data Parallel Pro-

grams," in the Proc. of Supercomputing '95, San Diego, California, Dec. 1995.

[31 Glenn Ammons, Thomas Ball, and James R. Larus, "Exploiting Hardware Performance Counters
with Flow and Context Sensitive Profiling," in Proc. of ACM SIGPLAN Conference on Programming

Language Design and Implementation, Las Vegas, Nevada, June 1997.

13

[4] PradipBoseandThomasM. Conte,"PerformanceAnalysisandits ImpactonDesign,"IEEE Com-

puter, May 1998, pp. 41-49.

[5] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser, Eunice Santos,
Ramesh Subramanian, and Thorsten Von Eicken, "LogP: Towards a Realistic Model of Parallel

Computation," in Proc. of the 4th Symposium on Principles and Practices of Parallel Programming

(PPoPP '93), May 1993, pp. 1-12.

[6] Ewa Deelman, Aditya Dube, Adolfy Hoisie, Yong Luo, Richard Oliver, David Sunderam-Stukel,

Harvey Wasserman, Vikram S. Adve, Rajive Bagrodia, James C. Browne, Elias Houstis, Olaf

Lubeck, John Rice, Patricia Teller, and Mary K. Vernon, "POEMS: End-to-End Performance Design

of Large Parallel Adaptive Computational Systems," to Appear in the Proc. of the First hlternational

Workshop on Software and Performance, Santa Fe, New Mexico, Oct. 1998.

[7] Eric van der Deijl, Gerco Kanbier, Oiivier Temam, and Elena D. Granston, "A Cache Visualization

Tool," IEEE Computer, 30(7), July 1997, pp. 71-78.

[8] Jan Edler and Mark D. Hill, "Dinero IV Trace-Driven Uniprocessor Cache Simulator," Available on-

line from http://www.cs.wisc.edu/-markhill/DineroIV.

[9] Matthew I. Frank, Ananat Agarwal, and May K. Vernon, "LoPC: Modeling Contention in Parallel

Algorithms," in Proe. of the 6th ACM SIGPLAN Symposium on Principles and Practices of Parallel

Programming (PPoPP '97), Las Vegas, Nevada, June. 1997, pp. 276-287.

[10] Jeffrey D. Gee, Mark D. Hill, Dionisios N. Pnevmatikatos, and Alan Jay Smith, "Cache Performance
of the SPEC92 Benchmark Suite," IEEE Micro, August 1993.

[11] Somnath Ghosh, Margaret Martonosi, and Shard Malik, "Cache Miss Equations: An Analytical Rep-
resentation of Cache Misses," in Proc. of the 1lth ACM International Conference on Supercomput-

ing, Vienna, Austria, July 1997.

[12] Gideon Glass and Pei Cao, "Adaptive Page Replacement Based on Memory Reference Behavior," in

Proc. of Sigmetrics '97, Seattle, Washington, June 1997.

[13] Aaron Goldberg and John Hennessy, "Mtool: An Integrated System for Performance Debugging

Shared Memory Multiprocessor Applications," IEEE Transactions on Parallel and Distributed Sys-

tems, 4(1), Jan. 1993, pp. 28_,0.

[14] Stephen R. Goldschmidt and John Hennessy, "The Accuracy of Trace-Driven Simulations of Multi-

processors," in Proc. of Sigmetrics '95, 1995, pp. 146-157.

[15] Adolfy Hoisie, Olaf Lubeck, and Harvey Wasserman, "Performance and Scalability Analysis of

Teraflop-Scale Parallel Architectures Using Multidimensional Wavefront Applications," Technical

Report, Los Alamos National Laboratory, Aug. 1998.

[16] C.S. Ierotheou, S. E Johnson, M. Cross, and P. E Leggett, "Computer Aided Parallelisation Tools

(CAPTools)--Conceptual Overview and Performance on the Parallelisation of Structured Mesh

Codes," Parallel Computing, Vo. 22, 1996, pp. 163-195.

[17] Mark Horowitz, Margaret Martonosi, Todd C. Mowry, and Michael D. Smith, "Informing Memory

Operations: Providing Memory Performance Feedback in Modern Processors," in Proc. of the 23rd
Annual International Symposium on Computer Architecture, May 1996.

[18] J. Larus, "The SPIM Simulator for the MPIS R2000/R3000," in Computer Organization and

Design--The Hardware�Software hzterface by David A. Patterson and John L. Hennessy, Morgan
Kaufmann Publishers, 1994.

[19] James Laudon and Daniel Lenoski, "The SGI Origin: A ccNUMA Highly Scalable Server," Proc. of
the 24th Annual International Symposium on Computer Architecture, Denver, Colorado, June 2-4,

1997, pp. 241-251.

14

[20] ToddC. Mowry,"Toleratinglatencyin multiprocessorsthroughcompiler-insertedprefetching,"
ACM Transactions on Computer Systems, 16(1), Feb. 1998, pp. 55-92.

[21] Yong Luo, Olaf M. Lubeck, Harvey Wasserman, Federico Bassetti, and Kirk W. Ameron, "Develop-
ment and Validation of a Hierarchical Memory Model Incorporating CPU- and Memory-Operation

Overlap," Technical Report, Los Alamos National Laboratory, Sept. 1998.

[22] Margaret Martonosi, Anoop Gupta, and Thomas E. Anderson, "Tuning Memory Performance of

Sequential and Parallel Programs," IEEE Computer, 28(4), April 1995, pp. 32-40.

[23] Margaret Martonosi, David Oflet, and Mark Heinrich, "Integrating Performance Monitoring and
Communication in Parallel Computers," in Proc. of Sigmetrics '96, Philadelphia, Pennsylvania, May

1996.

[24] OpenMP Fortran Application Program Interface, Available on-line from http://www.openmp.org,
Oct. 97.

[25] Optimization and Tuning Guide for Fortran, C, and C++ -- AIX Version 3.2for RISC SystenU'6000,

IBM, 1993.

[26] Mendel Rosenblum, Stephen A. Herrod, Emmett Witchel, and Anoop Gupta, "Complete Computer

Simulation: The SimOS Approach," lEEE Parallel and Distributed Technology, Fall 1995.

[27] Abdul Waheed and Jerry Yan, "Performance Measurement of Parallel and Distributed System Using

On-Chip Counters," accepted to appear in The International Journal of Parallel and Distributed

Systems and Networks, 1998.

[28] M. Zagha, B. Larson, Steve Turner, Marty Itzkowitz, "Performance Analysis Using the Mips
R10000 Performance Counters," in Proc. of Supercomputing '96, Pittsburgh, Pennsylvania, Nov.

1996.

15

